• <menu id="66i4c"><strong id="66i4c"></strong></menu>
  • <nav id="66i4c"></nav>
  • 高盐废水怎么处理?

           废水、废酸、废盐、残渣,具有来源多样、种类繁多、成分复杂、有毒有害物质含量高、环境危害严重、处理经济成本高等特点,备受公众关注,在环保要求越来越严的今天,对废盐、残渣的处理成了个棘手的问题。


         《国家危险废物名录》中共有28大类危险废物与化工行业相关,其中化工废盐和废渣成分复杂、毒害性大,处置难度高。我国的危险废物污染防治是以风险全过程控制为原则,以经济可行、环境友好的污染防治技术为基础,积极推进危险废物减量化、再利用和资源化。同时,国家鼓励危险废物回收利用技术的研究与开发,逐步提高危险废物回收利用技术和装备水平,积极推广技术成熟、经济可行的危险废物回收利用技术。

           我们先来了解一下高盐废水到底是何方妖孽,竟让行业人士如此深恶痛绝。

    概念

            通常,对于废水生化处理而言,高盐废水是指含有机物和至少总溶解固体(TDS)的质量分数大于3.5%的废水。

           在这类废水中,除了含有有机污染物,还含有大量可溶性的无机盐,如Cl?、Na+、SO42?、Ca2+ 等,而这些盐的存在对常规的生物处理有明显的抑制作用,一般是生化处理的极限。

    来源

           1)海水淡化产生。

           2)化工生产:化学反应不完全或化学反应副产物,尤其染料、农药等化工产品生产过程中产生的大量高COD、高盐有毒废水。

           如:氨碱法制备纯碱生产中,蒸氨处理后系统排放废水的可溶性盐含量一般可达15%~20%,其中大部分为CaCl2、NaCl。

           在煤化工行业中,含盐废水经过热浓缩工艺后,外排的浓缩废水含盐量可达20%以上。

           3)废水处理:在废水处理过程中,水处理剂及酸、碱的加入带来的矿化,以及大部分水回收而产生的浓缩液,都会增加可溶性盐类的浓度,形成所谓的难于生化处理的“高盐度废水”,较普通废水对环境有更大的污染性。

           上述高盐废水的排放会对环境造成严重污染,如土壤板结,植物无法继续生长等。另外,大部分高盐废水同时也是高浓度有机废水,也会加速自然水系的富营养化,增加环境压力。

           如何处理高盐废水?这是大家主要关注的重点。了解高盐废水处理的工艺,用工艺原理来指导处理技术,这样可以针对不同的情况(废水性质,出水用途,水质要求等)设计出相应的路线方案来。

           处理高盐有机废水的工艺方法有物理法、化学法、生物法,一般都是以降低废水的COD和含盐量为目的。

    物化法

         (1)焚烧法:

           对于热值较高的高盐废水,COD含量高,在800-1000℃的条件下充分与空气中的氧气反应,COD转化为气体和固体残渣,一般适用于COD值大于100g/L的废水,且能耗较高。

         (2)电解法:

           高盐废水具有较高的导电性,在电解过程中,有机物电解质溶液可以发生一系列氧化还原反应,生成不溶于水的物质,经过沉淀或生成无害气体除去,降低COD。

           该方法处理与有机物和无机盐的种类也有关,Cl-存在时可在阳极放电,生成ClO-降解COD。但也有实验表明苯酚废水通过电解法处理只改变了COD的存在形式并没有减少TOC的存在总量。

          (3)膜分离工艺:

           目前较成熟的常用膜分离工艺有微滤、超滤、纳滤、反渗透、电渗析。

           微滤和超滤所用膜的孔径较大,对于COD和悬浮物(SS)的截留作用较好,但不能有效去除污水中的盐分。

           纳滤可以截留大部分二价离子。反渗透(RO)能够截留一价离子,可以除去部分溶解性有机物,但在水处理应用上有一定的限制。

           电渗析技术是比较有效和常用的脱盐技术。

           根据不同的要求可以选择不同的膜分离工艺处理,但当有机物浓度高时,膜易被污染,且成本较高。

          (4)蒸发结晶工艺:

           蒸发结晶工艺适用于COD值较低的工艺,其主要目的是使高盐废水固液分离。

           目前常用的是多效蒸发工艺和机械压缩蒸发工艺,蒸发结晶工艺瓶颈在于能耗大,各企业含盐废水的水质差异较大,处理效果和费用不同,经济效益不好,也会带来二次污染,常被用于预处理阶段。

         (5)吸附工艺:

           活性炭晶格结构独特,表面有很多含氧官能团,可吸附大量无机物和有机物在表面,同时一些有机物进入活性炭内部微孔形成螯合物,从而净化水质。

           Fenton氧化工艺可产生强氧化自由基,自由基可使有机物裂解,从而提高生化活性或去除有机物。

           在Fenton试剂体系中引入活性炭,可提高氧化基附近的有机物浓度,提高氧化效率。由于化学作用的进行,活性炭可以不断解吸再生,循环利用,避免二次污染。

    生物法

        高盐废水中的高盐度对微生物的代谢功能有抑制,生化处理效果不能达标,因此生物法工艺着眼于利用嗜盐菌强化高盐废水的生化处理效果。

    科普

           嗜盐菌是指在高盐环境下能够生长的细菌,多生存在高盐环境中。一般在含盐度为2℅-5℅的水体环境下能够良好生存的菌称为耐盐菌,3℅-15℅盐度环境下可生存的菌为中度嗜盐菌,一般为真菌,15℅-30℅可生存者成为极端嗜盐菌,一般为古细菌。它们可以在高盐度条件下维持体内的低水活度,保持酶活性,高盐废水环境中成长成为优势菌种后可废水COD进行降解,使排放水达标。

           目前嗜盐菌的研究还在试验中,随着技术成熟,由于生物法具有无二次污染,环保、安全,能够适应各种变化,有巨大的潜力,成本低廉等特点,可以广泛应用于工程实践。

           生物法的目的是降解水体中的有机污染物,对于高盐废水中的无机离子还需要与物化方法配合进行深度处理。

           通过对高盐废水处理工艺的分析和介绍来看,目前的工艺技术很多,但大体是围绕在物化和生物方面的研究。秉承可持续发展,经济有效的解决高盐废水处理问题,生物法脱盐技术可能是未来发展的主要研究方向。下面就简单介绍一些常见的生物脱盐技术。

           1、生物接触氧化:是常见的生物脱盐技术。生物膜法抗毒性强、耐冲击,可以保持充分的污泥龄,其生物相比较稳定,容积负荷能力强,与常规的活性污泥处理法相比,其水力停留时间更短。有学者以两段式接触氧化工艺来处理高盐废水,结果废水盐度可以降低到2.5*104mg/L甚至更低的水平,其COD去除率高达95%左右。

           2、厌氧技术及其改良:是常见的生物脱盐技术。此技术利用厌氧菌、嗜盐菌、硝化细菌对高盐环境的适应性来发挥脱盐作用。据调查,将嗜盐菌放入SBR反应器中,若泥龄为18日,则COD去除率高达95%,氨氮去除率不低于6l%。不过嗜盐菌的利用尚处于试验阶段。

           3、SBR法:是一种新型污水处理技术,也叫序批式活性污泥法,通过间歇性曝气来使活性污泥具有净化高盐废水的功效。

           SBR在运行上有鲜明的有序性,在操作上有间歇性,此技术的核心为SBR反应池,既能生物降解,还能用于初沉与二沉,更能集均化等功能为一体。对于废水排放量有较大变化和存在间歇排放特点的工厂,尤其适用。 

           SBR工艺仍在发展中,目前在基本工艺基础上也开发了一些特色的工艺,如:ICEAS、CAST、DAT-IAT、UNITANK、MSBR等。


    来源:废水管家

    谁有北京快三微信网投